
Under the RP-PPS method, the system of prorating IS the
same but the probabilities are different. Thus,

Terminal branch Prorated amount

1-2-1-1 (4.13) (~~) (3) :::: .81~ 3.80
1-2-1-2 (4.13) (2.3~) (3) :::: 1.275.96 ~O
1-7-7 (1.83) (3) :::: .92~ ... 5.96

Total :::: 3.00
The estimator Y., Eq. (3.2), can be written In a form

1

that corresponds to the idea of prorating path fruit to terminal
branches. Let Pi::::(Poi)·" (Pti)' which is the probability of

selecting the ith terminal branch. It follows that

Y.
1

y.
1

p.
1

(3.3)

where y. = [(Pl·)···(Pt·)Y ,]+ ...+[(P(k -,·),.,(Pt·)Yk·)+···+[Yt·)1 1 1 01 +111 1 1 1

Thus, y. IS the number of fruit "on" the ith terminal branch in-
1

eluding prorated amounts of path fruit. Assuming the RP-PPS method

and terminal branch 1-2-1-1 as an example, the value of y. IS
1

73.81IS .03103 ::::2379 which gIves

the same result that was obtained when Eq. (3.2) was used.

Table 3.2, columns headed Y2 and Y4' present estimates of

the total number of apples on the tree for the RP-EP and RP-PPS
methods and each of the possible random paths. These estimates
were obtained by using the technique of prorating path fruit,
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Eq. (3.3). That is, estimat.es of the total number of apples
were obtained by dividing the values of y. (last twO columns of

1

Table 3.1) by the appropriate probabilities which are presented
1n Table 3.2, columns P2 and P4.

For comparison of the four methods we now need to decide
how to include the path fruit for the DS-EP and DS-PPS methods.
If the amount of path fruit is small, the best method might be
to count all path fruit at the time the tree is mapped to deter-
mine terminal branches. In this case, assuming a sample of one
terminal branch, the estimator, would be

Y.
1

Y +
y.
1

p.
1

(3.4)

,
where Y is the number of path fruit, y. 1S the number of fruit

1

on the ith terminal branch and p. is the probability of selecting
1

the ith terminal branch. Alternatives are not considered in this
illustration because, from a practical viewpoint, interest is in
the random path methods. Thus, as a matter of expediency, the

A A

estimator (3.4) was used to obtain the estimates, Yl and Y3, that

are presented in Table 3.2 for the DS-EP and DS-PPS methods.
Since only Sl apples out of 1901 were on path sections, the method
of accounting for the apples on path sections probably has a
very small impact on the sampling variance.
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Exercise 3.3 For terminal branches 3-1-4-1 and 3-3,

calculate estimates of the total number of apples on the tree

for the DS-EP and DS-PPS methods using the estimator (3.4).

Your answer should agree with the estimates that are presented

in Table 3.1 for these two branches.

For each terminal branch and each of the four estimators
(methods) there is a unique estimate of the total nllmher of apples.
All four estimators are unbiased. By definition. an estimator is
unbiased if the expected (average) value of the estimates that
might occur is equal to the population value. To find the expected
value of an estimator, each estimate must be weighted by the
probability of its occurence.

Exercise 3.4 For the RP-EP and RP-PPS methods, compute the

expected value of the estimates presented &n Table 3.2. The

answer, except for rounding error, should be exactly 1901, which

is the total number of apples on the tree.

3.5 VARIANCES OF THE ESTIMATORS
With reference to the theory of expected values, the

variance of a random variable, Y, IS the average of the squared
deviations of Y from its expected (average) value. To be more
specific, suppose Y IS a random variable that can equal one of
a set of values YI, YZ"" 'YN with probabilities PI' PZ'···' PN
where rP. = 1. By definition, the average value of Y is

1

Y = E(Y) = EP.Y.
1 1

96



- 2and the var iance of Y, which is the average value of (Y-Y) , IS

E(y_y)2
N _ 2

= ~P.(Y.-Y)
1 1

Exercise 3.5 Show that ~P.(y._y)2 = ~p.y.2_y2
1 1 1 1

Consider the estimator for the RP-PPS method. It is a random
variable that can equal anyone of the set of values in column
Y4 of Table 3.2. The set of probabilities IS presented in column
P4. By definition, the variance of the estimator (or estimates)
IS

(.05492) (3751-1901)2+ ... +(.06163) (814-1901)2=80-0,194

or using the right hand side of the equation in exercise 3.5,
(.05492) (3751) 2+ •.• + (.06163) (814) 2 - (1901) 2 = 800,194

The result, 800,194, is the sampling variance for the RP-PPS

method when only one terminal branch is selected. If four ter-
minal branches (or random paths) were selected with replacement,
four estimates of the tree total would be computed, one for each
branch, and the variance of the average of the four estimates

would be 8004194 = 200,048.

The sampling variances (for a sample of one branch) are
presented in Table 3.3 for each of the four methods and each of
the six trees. The third tree is the one that was used above
as an example. It is not expected that the four methods will
always rank In the same order from one tree to another. However,
the results illustrate some points that are of interest and impor-
tance.
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3.6 DISCUSSION OF THE METHODS
The RP-EP method requIres considerably less time than the

RP-PPS method, but it has relatively high sampling variance be-
cause, at any given stage of branching, a large branch has the
same probability of selection as a small one. That is, the
RP-EP method is such that the probability of selecting a termi-
nal branch has little or no relation to the number of fruit on
the branch. The result, as shown by the sampling variances In
Table 3.3, is a good illustration of a point that was made
earlier. Compared to selecting sampling units with equal prob-
ability (as in the DS-EP method), the introduction of unequal
probabilities of selection (as in the RP-EP method) will in-
crease the sampling variance unless the selection probabilities
are related to the values of the characteristic being measured
in a way that will reduce sampling variance.

Figure 3.1 is a dot chart with the number of apples on a
branch (column headed EP in Table 3.1) plotted against the values
of P2. The wide range in the selection probabilities and the
lack of a relation explains the high sampling variance of the
RP-EP method compared with the other methods. For comparIson,
Figure 3.2 is a dot chart for number of apples and the selection
probabilities for the RP-PPS method. Compare Figure 3.2 with
Figure 1.2 which showed a dot chart where sampling with pps
would rank high.

After a branch has been identified and marked, the time
required to obtain its csa, with a convenient instrument that
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gives a reading directly in square inches (or square centi-
meters), is quite small. The use of csa as an auxiliary vari-
able reduced sampling variance by a large amount. The reduction
in variance in relation to cost is definitely advantageous.
According to Table 3.3, the sampling variances for DS-PPS and
RP-PPS are about the same and much less than the sampling vari-
ance for the DS-EP method. This indicates that RP-PPS is a good
choice because it avoids the work of identifying all terminal
branches before sampling. However, results In Table 3.3 should
not be accepted as representative. The csa is not always an
effective measure. Pruning and maintenance practices, age of
trees, species or variety of trees, and other factors have some
influence on the relation between csa and number of apples.
The purposes of an intensive investigation limited to a few
trees include testing different procedures for counting apples
or measuring the SIze of branches, and acquiring ideas that
seem to be worth exploring as possibilities for large scale
application.

It is extremely important in the processes of sampling to
understand the part played by randomization. Important biases
sometimes occur even when strict attention IS paid to details
in making random selections. On the other hand, subjective
evaluations or determinations in sampling are commonplace. With
knowledge of how various factors effect sampling variance, the
exercise of good judgement can be very effective in reducing
sampling variance. But, there are points in the processes of
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sampling where a determination should be strictly random. Some
design constraints may be determined subjectively but selections
of units for a sample should be in accord with rigorous, technical
interpretation of randomness. It is generally preferable to have
random selections made under competent supervision in an office,
but that is not always feasible. Thus, one advantage of taking
photographs of a sample of bare trees (assuming it is feasible)
is that sample branches can be selected in the office. The se-
lected branches are marked on photographs for enumerators. In this
situation an enumerator's work is subiect to full verification.
Incidentally, the economics of sample surveys suggests that larger
investments in sample design and selection can often be justified
when the same sample is to be used for several surveys rather
than one.

Exercise 3.6 Suppose the RP-PPS method is being applied

and in the process you come to the following situation:

y
Assume that branch A~ which has a csa equal to 3.2 square inches~

has already been selected. It divides into tuo branches A-1 and

A-2 uith csa's equal to 1.4 and 1.6. with regard to size~ the two

branches, A-1 and A-2~ qualify as terminal branches and ordinarily

A-1 and A-2 would be accepted as terminal branches. But, before

selecting one of the two, you happen to notice that A-2 has no

apples on it and that A-1 appears to have approximately an average

amount. Consider the following alternatives:
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(1) Accept A, which includes A-1 and A-2J as the tepminal
1bpanchJ and expand the count of apples by p J whepe PAA

was the ppobability of selecting A.

(2) Accept A-1 and A-2 as tepminal bpanches and select one

by (!. )(3.0)with pps. Expand the count on A-lop A-2 PA ~

op (}A)(i:~)J depending on whethep A-lop A-2 is selected.

(3) Discapd A-2 since it has no apples on it and take A-l

h . b . (! )(3. 0) h •as t e tepm~nal panch us~ng PA ~ as t e expans~on

factop.

Discuss the altepnatives with pegapd to bias and sampling vapiance.

Exepcise 3.7 Refep to exepcise 3.6 and as a vapiation of the

situation assume that bpanch A-2 has been selected at pandom in

accopd with the instpuctions fop the pandom path method. The

enumepatop ppepapes to count the apples on A-2 but finds thepe ape

no apples. He pecognizesJ since a sample of only one bpanch is to

be selected fop the sample fpom this tpeeJ that the estimate of

the numbep of apples on the tpee will be zepo (assuming no path

fpuit on thepath to A-2). Thepe is obviously a lapge numbep of

apples on the tpeeJ so he might have a stpong opinion that some-

thing should be done that would give a bettep sample. How would

you pespond to each of the following possibilities:

(1) Accept A-2 as a tepminal bpanchJ which means using zepo

as an estimate of the numbep of apples on the tpee.

Remembep A-2 has alpeady been selected.
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(2) Reject A-2 as a sample. Start at the beginning and

select anothpr terminal branch to replace A-2.

(3) Accept A which includes A-1 and A-2, as the terminal

branch for the sample.

Discuss the three possibilities with regard to bias and sampling

variance.

Exercise 3.8 In application of the RP-PPS method would it

be advisab le to be ZOllking forward, as one ,ll'proaches the tey'mina l

branch stage, for bl'anC'hes that are large enciu9h to be terminal

branches but clearly have a very small number of apples on them.

With reference to the diagram in exercise 3.6 as an example, an

enumerator looking forward, and considering whrzt was ahead, could

have stopped when A Was selected and accepted A as a terminal

branch. Otherwise, he would normally have fol ,~owed the selection

procedure one stage further. In application of the random path

method, what is your opinion of the feasibility of looking ahead

and taking eye estimates of numbers of appl~s into account ~n

determining the terminal branch. Can it be used to reduce sampling

error without risk of introducing bias? Think about the matter

with regard to instructions that would be given to enumerators.

Exercise 3.9 It is not likely that there would be an interest

~n estimating the average number of terminal branches per tree.

However, as an exerCLSC, suppose the RP-PPS ne~hod ~s applied to

the tree for which data arepresented in Table 3.1. Assume that

the following four terminal branches are selected as a sample:
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1-1-2, 1-2-1-2, 2-4, and 3-2-1. From this sampl~ estimate

the number of terminal branches on the tree. (The selection

probabilities have already been computed, see Table 3.2). The

parameter being estimated is 26. Ans. 33.4.

Exercise 3.10 Suppose a sample of 25 apple trees has been

selected and that four enumerators have been trained in the appli-

cation of the RP-PPS method. Assume that each enumerator, working

independently and using the RP-PPS method, selects a sample of one

terminal branch from each of the 25 trees. It is unlikely that

enumerators will interpret terminal branches in exactly the Bame

way. For example, one enumerator might have a tendency to follow

the random path to terminal branches of the smallest permissible

size, whereas another might stop as soon as he obtains a branch

that is small enough to qualify as a terminal branch. Or, a

branch along a path might be treated as a terminal branch by one

enumerator and as path fruit by another. However, for each enu-

merator an estimate of the total number of apples on each tree is

made using either (3.2) or (3.3) as the estimator. The 25 esti-

mates are added together to obtain an estimate of the total

number of apples on the 25 trees. This gives four estimates,

one for each enumerator, of the total number of apples on the

25 trees.

(a) Assume that random selection is performed correctly at

each stage of branching (after all branches at the stage have been

completely identified and measured), and assume that apples have
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been correctly counted. Do the four estimates of the total

number of apples all have the same expected value and the same

variance?

(b) Suppose four estimates~ one for each enumerator~ of

the total number of terminal branches on the 25 trees are made.

Do these estimates have the same expected value? Why?

(c) Two enumerators measuring the csa's of any given set

of branches are not likely to obtain exactly the same numerical

values. Is this important? Discuss.

(d) The assumptio~made in (a) are subject to question.

Try listing some differences among enumerators that will~ and will

not~ have an effect on the expected value of an estimate of the

total number of apples on the 25 trees.

Exercise 3. 11 Suppose~ owing to pruning practice8~ that

many cases like the following are found:

has been pruned

Assume the instructions were to always measure the csa at the

base (point A) of a branch~ Would you expect the csa measurements

under the RP-PPS method to be ineffective~or even increase the

sampling variance~ compared with the DS-EP method? In cases like

the above drawing~ perhaps measuring the csa at position B would

be more effective. What is your opinion? Inc'identally~ this is
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a good example of why it is essential that a research and

development staff should have actual experience with practical

operations and decisions that must be made by enumerators. Do

not expect high quality results when instructions are not well

adapted. Agreement between concepts (the theoretical model;

and operations as actually performed is of fundamental importance.
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Table 3.1--Data by Branches for Apple Tree No.3

No. of apples on
or assigned to a

Branch 1st staRe 2nd staRe 3rd staRe 4th stage terminal branch
identification csa I No. csa I No. csa I No. csa I No. EP PPS

1-1-1 11.60 3.65 2.68 206 206 206
1-1-2 .97 32 32 32

3.65

1-2-1-1 5.61 (3) 4.13 1.48 73 73.8 73.8
1-2-1-2 2.32 138 138.7 139.3

3.80

1-2-2 1.83 133 134.5 133.9
5.96

1-3-1 2.01 .97 32 32 32
1-3-2 1.03 30 30 30

2.00

1-4 1.43 27 27 27
1-5 2.24 88 88 88

14.94

2-1-1 13.45 (6) 3.36 .92 42 42.8 42.5
2-1-2 1.99 109 109.7 1l0.1

2.91

2-2-1 5.09 1.47 74 74.7 74.7
2-2-2-1 3.47 (16) 1.64 56 64.4 65.2
2-2-2-2 1.54 116 124.4 124.6--4.94 3.1B

2-3 1.99 124 125.5 125.0
2-4 1.83 79 80.5 79.9

12.27

3-1-1 12.84 (1) 6.30 (2) 1.47 30 30.6 30.4
3-1-2 1.21 31 31.6 31.3
3-1-3 1.91 41 41.6 41.5
3-1-4-1 4.13 (23) 1.47 16 27.7 29.S
3-1-4-2 LIS 23 34.8 33.(,--8.72 2.62

3-2-1 5.35 1.40 35 35.1 35.1
3-2-2 1.42 61 61.1 61.1
3-2-3 1.76 116 116.1 116.1
3-2-4 3.26 88 88.1 88.1

7.84

3-3 2.59 50 50.3 50.2-- ---37.89 14.24 1901.0 1901.0

Total number of apples on terminal branches 1850
Total number of apples on path sections 51
Grand total 1901
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Table 3.2 Probabilities of Selection and Estimates of the Total

Number of Apples on Tree No. 3

DS-EP RP-EP DS-PPS RP-PPS
Terminal
branch no • PI Yl P2 Y2 P3 Y3 P4 Y4

1-1-1 •03846 5407 .03333 6180 .06095 3431 .05492 3751
1-1-2 .03846 883 .03333 960 .02206 1502 .01988 1610
1-2-1-1 .03846 1949 .01667 4425 .03366 2220 .03103 2379
1-2-1-2 .03846 3639 .01667 8325 .05276 2667 .04864 2863
1-2-2 .03846 3509 .03333 4035 .04162 3247 .03530 3794
1-3-1 .03846 883 .03333 960 .02206 1502 .01998 1602

1-3-2 .03846 831 .03333 900 .02342 1332 .02121 1414
1-4 .03846 753 .06667 405 .032'52 881 .02930 921
1-5 .03846 2339 .06667 1320 .05094 1776 .04590 1917
2-1-1 .03846 1143 .04167 1026 .02092 2059 .03073 1384
2-1-2 .03846 2885 .04167 2634 .04526 2459 .06647 1657

2-2-1 .03846 1975 .04167 1794 .03343 2265 .04382 1706
2-2-2-1 .03846 1507 .02083 3090 .03730 1552 .05334 1222
2-2-2-2 .03846 3067 .02083 5972 .03502 3363 .05009 2489
2-3 .03846 3275 ,08333 1506 .04526 2791 .05757 2171
2-4 .03846 2105 .08333 966 .04162 1949 .05294 1509

3-1-1 .03846 831 .02778 1101 .03343 948 .02528 1203
3-1-2 .03846 857 .02778 1137 .02752 1147 .02081 1506
3-1-3 .03846 1117 .02778 1497 .04344 995 .03284 1264
3-1-4-1 .03846 467 .01389 2001 .03343 530 .03984 742
3-1-4-2 .03846 649 .01389 2505 .02615 931 .03117 1078

3-2-1 .03846 961 .02778 1263 .03184 1150 .02274 1542
3-2-2 .03846 1637 .02778 2199 .03229 1940 .02306 2648
3-2-3 .03846 3067 .02778 4179 .04003 2949 .02858 4062
3-2-4 .03846 2339 .02778 3171 .07414 1238 .05294 1665
3-3 .03846 1351 .11111 453 .05890 900 .06163 814

.99996 1.00001 .99997 1.00001
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Table 3.3 Variances of Estimates of the Total Number of Apples
on Each of Six Trees from a Sample of One Terminal Branch

No. of No. of Variances
terminal csa of apples

Tree branches tnmk on tree
1 13 7.0 214 40 24 22
2 27 20.0 1448 882 1383 674 478
3 26 23.0 1901 1419 2815 755 800
4 20 16.5 1658 1148 1444 380 350
5 19 13.5 403 82 263 65 79
6 30 19.5 1575 894 4339 416 513

Total 135 99.5 7199 4465 10272 2314 2242
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TWO-STAGE SAMPLING
CHAPTER IV

4.1 INTRODUCTION
Most sampling plans for estimating or forecasting tree-c~op

production will involve three or four stages of sampling. Typi-
cally, there will be a sample of orchards (fields), a sample of
trees in selected orchards, and a sample of branches from a
sample of trees. Fruit on the sample branches would be counted
and a small sample of fruit on the sample branches might be se-
lected for measurements of size of fruit.

This chapter illustrates some alternative two-stage sam-
pIing plans using data for the six apple trees. Trees are the
psu's (primary sampling units) and terminal branches or "paths"
are the ssu's (secondary sampling units). The six trees will
be treated as a population to be sampled and population vari-
ance formulas will be used to find the first and second-stage
components of variance. Incidentally, the problem of making
accurate counts of numbers of fruit on sample branches needs
serious consideration. However, in the illustrations that
follow, attention is limited to matters of sampling.

In the application of two-stage sampling, psu's are often
selected with probabilities proportional to N., where N. is the

1 1

number of ssu's in the ith psu. For some surveys, sampling with
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probability proportional to N. has important advantages. When
1

the N. are not known, approximations of N. are often used.
1 1

Wi th regard to sampling trees, the N. (number of branches
1

on trees) are not known and it is not feasible to determine the
N. for trees in an orchard. Some other effective measure of size
1

must be found or the sample trees will need to be selected with
equal probability. One possibility is to use a double sampling
procedure. For example, a "large" sample of trees might be
selected with equal probabilities. For each tree in the large
sample a measurement of size, that takes relatively little time,
might be made and used in the selection of a small sample of trees
from the large sample. Possible measures of size are the csa of
the trunk, the sum of the csa's of primary branches, and eye
estimates of the amount of fruit. The feasibility of double
sampling would depend upon the cost of obtaining the measurements
of size and the relation between the measure of size and the
amount of fruit on the trees. Stratification of trees within an
orchard also needs to be considered. Sometimes strata within an
orchard are readily recognized; for example, differences in age
or variety. Perhaps a relation between Slze of trunk and number
of apples will be found to be effective only within strata com-
prised of trees of the same variety and of a uniform condition.

Stratification, systematic sampling, or other techniques
might be applied at any stage of sampling. However, for simpli-
city, the discussion will be limited to: (1) simple random sampling
of psu's (selection with equal probability and without replacement)
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and (2) sampling the psu's with pps (sampling with unequal proba-
bilities of selection and replacement). Within each selected psu
we will assume that a simple random sample of n. ssu's is selected.

1

The number of psu's in the sample is m and the number of ssu's in
m

the sample is n = En ..
1

Refer to Table 4.1 for an exposition of the notation that
will be used for representing data for a population. Examine the
notation carefully. Sample data are represented in the same way
except that lower case letters are used.

Since a general mathematical formulation of estimators and
their variances is rather complex for two-stage sampling, we will
procede from specific cases to more general description. The
primary purpose of the next section is to present an elementary
view of two-stage sampling.
4.2 PRIMARY SAMPLING UNITS EQUAL IN SIZE

The simplest case of two-stage sampling is one where all psu's
have the same number of ssu's, where simple random is applied at
both stages, and where the same number of ssu's is selected from
each psu in the sample. In this case, and with reference to thp.

notation in Table 4.1, the N. all equal N and the n. all equal n.
1 1

To summarize, the sampling plan under consideration is to select
a simple random sample of m psu's from a population of M psu's
and a simple random sample of n ssu's from each of the m psu's,
which gives a total sample of n = mn ssu's.

113



For illustration a hypothetical population of 4 psu's
with 5 ssu's in each is assumed. The
sented in the top part of Table 4.2.

20 values of Y .. are pre-IJ
Deviations of Y .. from Y

IJ
are also presented. In single-stage sampling, there is one com-

-ponent of variance, namely the variance of (Y .. - Y) which in1J
the illustration is 487.053.

-In two-stage sampling, each deviation (Yij - Y) divides
into two deviations as follows:

- - -
(Y .. - Y) = (Y. - Y) + (Y .. - Y.)

1J 1 1J 1

- -The values of (Y. - Y) are a set of deviations which reflect
1

-the variation among psu's and the values of (Y.. - Y.) form the
1. J 1

other set which reflects variation among ssu's within psu's.
-Turn to Table 4.2 and verify the deviations (components) (Y. - Y)

1

and (y .. - Y.).
1J 1

Notice that the between psu component, (Y. - Y),
1

varies from one psu to another but is constant within a psu. There
- -are only M different values of (y. - Y) and selecting a sample of
1

m psu's is equivalent to selecting a sample of m values of
Also, study the values of the within psu component, (Y .. -

1J

- -
(Y. - Y).

1

Y. ) •
1

It varies from one ssu to another within a psu, but its average
value is zero for each psu. Therefore, these deviations reflect
only variation within psu's. The second stage of sampling IS

-equivalent to selecting mn of the deviations, (Y .. - Y.)
IJ 1

Now consider the variance of y, the mean of a two-stage
sample. The difference between y and Y may be expressed as follows:

- - -- - -
y - Y = dl + d2
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= = =

=that y - Y = dl + d2.

where dl is the average value of (Yi - Y) for the m psu's in the
sample and d2 is the average value of (Y .. - Y.) for the mn ssu's1J 1
1n the sample.

Exercise 4.1 With reference to Table 4.2, suppose that

psu's 1 and 3 are selected at the first stage and that ssu's 1

and 4 are selected within psu No.1 and ssu's 3 and 5 are selected

within psu No.3. Find the values of y, dl, and d2. Verify

Ans. 34-43 = -9.4 + 0.4.
Since dl is the average of m random values of (Yi - Y) and

-d2 1S the average of mn random values of (Y .. - Y.), it follows1J 1= = = =that dl and d2 are random variables. It happens that dl and d2
are independent. Therefore, the variance of y is equal to the
variance of dl plus the variance of d2. From knowledge of the
variance of the mean of a simple random sample, one might antici-

- -pate what the variances of dl and d2 are and hence the formula
-for the variance of y which is:

2of (Yi Y) and S2 is the variance of
I h· S2 .. 1n t 1S case, 2 1S a slmp e average

2S2i' which is logical since the psu's

- M mV(y) = -M-

where si is the variance
the deviations(Y .. - Y.).1J 1
of the within psu variances,

=

N+

=

-- n
N mn

(4.1)

are equal in size and are selected with equal probabilities. More-
over, the within psu sample size is constant.

2 2For the illustration, values of Sl and 52 as functions of
the deviations (Y. - Y) and (Y .. - Y.) are shown at the bottom1 1J 1
of Table 4.2.
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(Y .. - Y.), would not be computed. The varIances,
1J 1

could be calculated as follows:

[

2 y2IYi - t.r
M - 1

In practice, the two sets of deviations

1= --::::T
N

= ::
(Y.

1
and

Zand SZ'

(4. Z)

~

IY?
S~ = 1 EEY? 1_ (4.3)

Mcr~-l) ij IJ N

Exer>aise 4.2 Use Eq.'s 4.2 and 4.3 to find the values of
2 2 -2Sl and S2 in the numer>ical example. Explain why N appear>s as a

divisor> in Eq. 4.2.

Exer>aise 4.3 FOr> m=2 and n=Z find the var>ianae of ~ using

Eq. 4.1. Ans.llB.9

Exer>aise 4.4 Show algebr>aically, that the r>ight hand side

of Eq. 4.3 is equal to

, ·th· th .thssu s w~ ~n e ~ psu.
M

Z, wher>e SZi &8 the var>ianae among

One partial check on a varIance formula is to determine
whether it reduces to known formulas for special cases. Two special
cases are of interest: (1) When m = M, two-stage sampling becomes
stratified random sampling. That is, the psu's become strata.
Observe, when m = M, that the first term on the right side of Eq.
4.1 vanishes and the second term becomes the variance for a stra-
tified random sample of n units from each stratum (psu). (2) When
n = N, two-stage sampling reduces to single-stage cluster sampling.
In this case the last term in Eq. 4.1 vanishes, leaving the first
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tlrm which is the variance for a cluster sample where the c1us-
te~s (sampling units) are the psu's.

Exercise 4.5 Suppose m=l and n=l. In this case the seZec-

tion of one psu at random and the selection of one ssu within

it is equivaZent to a single-stage sampZe of one ssu. Therefore,

the v~riance of y given by Eq. 4.1 when m=l and n=l shouZd be

equal to the variance of y for a single-stage random sample

when n=l. Verify this using the data in Table 4.2. Remember

the app~opriate variance formula for the singZe-stage sample is

Eq. 1.4.

It is important to study the structure of the variance
formula, Eq. 4.1, for the variance of y. When the number of
psu's in the sample is fixed, increasing the size of the sample
in each psu reduces only the second component of variance. As
n increases, a point is reached where the among-psu variance is
the major component and further increases in n contributes very

-little to reducing the variance of y. Notice that increasing m
reduces both components when n. is constant for all psu's.

1

4.3 PRIMARY SAMPLING UNITS UNEQUAL IN SIZE
Populations having psu's with equal numbers of ssu's are

relatively infrequent. In this section, it is assumed that the
numbers, N., of ssu's vary and that simple random sampling (with-

1

out replacement) is applied at both stages.
As discussed in Chapter I, Sec. 1.1.2, "P" or "p" with

appropriate subscripts refer to selection probabilities on the
occasion of a particular random draw and "f" with an appropriate
subscript refers to the probability that a particular unit has
of being in the sample.
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A general expressIon for the probability, f .. , which any
IJ

given ssu has of being included in a two-stage sample is:

f.. :: f.fCjli)
IJ 1

(4.4)

where f. the probability which the .th psu has of beingIS 1
1

in the sample, and
f (i I j) is the conditional probability which the j th 5 su

in the ith psu has of being in the sample, given
that the ith psu is in the sample of psu's.

n·
Wi th simple random sampl ing at both stages, f. ::Mm , and £(j Ii)= ~

1 N.
1

Since f. IS constant for the case under consideration, let f. =
1 1

f1 which is the sampling fraction at the first stage. Also, let
f(j'i) = fZi which is the sampling fraction at the second stage
within the ith psu. Then Eq. 4.4 reduces to:

f .. = fl f2 .
1J 1

(4.5)

If the f2i (the sampling fractions at the second stage) are con-
stant, f .. is constant and every ssu in the population has theIJ
same chance of being in the sample. Then, Eq. 4.5 becomes:

f :: fl f2

where f2 is the constant second-stage sampling fraction. However,
in the interest of generality, a requirement that f2i be constant
will not be specified at this point in the discussion.

-An estimator of the population mean, Y, is

N.y.
1 1
m (4.6)
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where y.
1

=

n.
E1. y ..
J IJ

n.
1

is the average of n. ssu's in the
1

sampl~ from the ith psu in the sample. Study the estimator
4.7 and observe that:

N.y. 15 an estimate of Y., the total for the ith psu;
111

11\

E
i

m
(M)E

1

N.y.
1 1
m

N.y.
1 1

m

IS an average of the estimated totals for the m
psu's in the sample; therefore,

is an estimate of the population total and (~)

in Eq. 5.6, changes the estimated total to an
estimate of Y.

The variance of y is given by:

t1-f1)si M 2 2 ]A 1 1 N. S2'
V(y) + E M(1-f2i) 1 1 (4.7)= - NTm n.i 1

1= ;;r
N

so si will be expressed on the basis of one ssu, and

where S21

M
L (Y. _ Y) 2
. 1
1

M - 1 IS the variance among psu totals divided

N.
E1. (Y ..= J IJN.

1

_ ¥.)2
1

- 1 is the variance among ssu's within the
.th
1 psu.
The first part of 4.7, ~ (l-fl)Si, is the variance of y assuming
all of the m psu's are enumerated completely. That is, the
theory for single-stage sampling applies to the first stage.
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The quantity: 2 2
N. S2'1 1

n·1

In Eq. 4.7 is recognizable as the variance of N.y. where y.III
. th f 1 d 1 f n. ssu's l'n the l·thIS e mean 0 a simp e ran om samp e 0 1

psu.
Eq. 4.7 was written in the above form for comparison with

other variance formulas given later for two-stage sampling. The
second term within [ ] could be written as follows:

2 2N.S2"
1 1

- f2i) n.
1

(4.8)

Mbecause :-:7
N

1= ;:r
N

1M' Expression 4.8 shows that the variances of

N.y. are summed over all psu's in the population and the sum is
1 1

divided by M giving an average of such variances. The variances
of N.y. receive equal weight in the average because the psu's

1 1

are selected with equal probabilities. Since the average variance
-2of NiYi pertains to psu totals, the divisor N appears in 4.8 to

convert the variance to a basis of one ssu. Such analysis of
a formula is helpful in determining whether one has the right
formula for a particular purpose.

Exercise 4.6 If the variance formulas (4.1) and (4.7)

are correct, formula (4.7) should reduce to (4.1) when N. = N
1

-and n. = n. Show that this is true.
1
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Y =

When the second-stage sampling fractions
and equal to f2, the estimator, (4.6), reduces

LLY· .1J
f2mN

and its varian~e, (4.7), reduces to:

"-
S2 S21V(y) = (1 - f1) + (1 - f2) 2m

mn

where S2 is the same as in 4 .7 ,1

S2 M N. 2= L:~ S2i2 . N
1

n.
1~,
1

to:
are constant

(4.9)

(4.10)

and

M
L n._ i 1

n=~

Exercise 4. ? • Show that Eq. 's (4.9) and (4.10) follow
n·

from (4.6) and (4. ?) when f2 = 1

rr:1
Exercise 4.8 Show that f2mN, in Eq. 4.9, is equal to

the expected sample size. That is, show that E(n) = f2mN where
m

n = L n .. In practice one would probably use n, the actual
1

1

sample size, in the estimator instead of the expected size,

f2mN. Moreover, N is not known in most practical applications.
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4.3.1 NUMERICAL EXAMPLE
As a numerical example, the apple tree data presented in

Table 2.1 will be treated as a population to be sampled. The
psu's are trees and ssu's are terminal branches. The number
of trees in an orchard IS usually large and in practice the
number of sample trees selected from an orchard would be rela-
tively small, that is (1 - fl) would be nearly equal to 1.
Accordingly, for this illustration, (1 - fl) is assumed to be
1 even though M = 6 and (1 - fl) = M~m is considerably less
than 1.

Suppose we are interested in knowing what the sampling
variance is for the following three allocations of a sample of
four terminal branches assuming simple random sampling at both
stages:

\J'o.of Branches
Selected from

No. of Trees Each Tree
Allocation n. = nm 1

1 1 4

2 2 2

3 4 1

To find the variances for the three allocations we need
part of the results in Table 2.6. The relevant results, N. Y.,1, 1
and S~i' from Table 2.6 are included in Table 4.3 along with
some other information that will be used later.
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In each allocation, n. is constant (the same for all
1

n·trees) which means that N~ is not constant and the branches
1

do not have equal probability of being in the sample. Thus, the
estimator, Eq. 4.6, and its variance, Eq. 4.7, are applicable.
The variances for the three allocations are presented in Table
4.4.

Exercise 4.9 Refer to the data presented in Table 4.3,
2columns Ni, Yi, and S2i and perform the calculations that are

needed to obtain the results presented in Table 4.4 for m = 2

and -n. = n = 2. Assume that f1 is negligable.
1

Exercise 4.10 Complete the following table:

Variance Components- A

n m n V(y) Amonq psu's Within psu's
1 1 1 1167.0
2 1 2
4 1 4
2 2 1
4 2 2
8 2 4
4 4 1
8 4 2

16 4 4 306.5

If you understand the variance formula 4.? and the results in

Table 4.3, this table can be completed very easily. First, fill

in the "Among psu's" column by copying the appropriate numbers

from Table 4.4. Consider how to fill in the "Within psu's" column

by making simple changes in the within psu components in Table

4.4. Study the results. For a constant value of n and an increase

in m from 1 to 4 there is a ?5 percent reduction in the variance

of y; but, for a constant m, increasing n from 1 to 4 reduces the

variance of y by less than 50 percent.
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Exercise 4.11 One of the numbers in Table 4.4 is the

samp~ing variance for m = 2 and n. = N .. What is the number?
'Z- 'Z-

Exercise 4.12 Find the probability that any given terminal

branch on tree No. 1 has of being in the sample when m = 2 and

n. = 2 for a~~ trees. What is the probabi~ity for tree No.3?
'Z-

Is the unequal probability something to be concerned about?

In what ways?

It is of interest to compare the variance for a simple
random (single-stage) sample of 4 branches with the variances

~
of y in Table 4.4. The variance among the 135 branches is 1,762

(see Table 2.6). Hence, the variance of the mean of a sample
of 4 branches is 1762-4- = 440, disregarding the fpc. The answer,

"-440, is less than the variances of y in Table 4.4. This is
expected with the possible exception of the allocation m = 4
and n. = 1, which has a variance equal to 583.5. However, when

1

one recognizes in the specified two-stage plans that all branches
do not have the same probabilities of selection, it is resonable
to expect that the answer for simple random sampling would be
less than 583.5.

Suppose we wish to give every branch an equal chance of
being 1n the sample. Considering samples of 4 branches the over-
all sampling fraction would 4 If we specify that 2,be m. m =
then fl

1 ni (or f2) should equal 4 Since the N.= j and all 1'[:""" 45· 11
are small and the n· must be integers, it 1S not possible to have

1

ni 4all ~ exactly equal to 45. This presents a type of practical
1

problem that often occurs when working with small integers. Ways
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of dealing with this problem will not be discussed at this
n·point. Instead, we will procede as though the fraction N~

1

4is sufficiently close to 45 to warrant use of the unweighted
average of the sample data as the estimator and the variance
formula 4.10. Assuming (1 - fl) = 1, for reasons explained
above, and substituting the numerical values of si and s~ in
4.10, we have:

(4.11)

When m = 2 and f2
4 -= 45' the value of n is 2 and the variance of

Y is 769.9. This answer compares with 797.6 in Table 4.4.
Exercise 4.13 Verify the numbers, 917.1 and 1367, in Eq.

4. 11.

It is often desirable to specify that all ssu's in the
population have an equal chance of being in the sample. As
discussed above, one way of fulfilling this requirement is to
select psu's with equal probability and apply a constant sampling
fraction at the second stage of sampling. But, when the sizes
of the pus's vary widely, this method often has two important
disadvantages: (1) Variance associated with variation in the
sizes of the psu's is included in the variance of an estimate
unless such variation is reduced by design. Notice that sf in
4.7 is the variance among psu totals rather than the variance
among psu means. Incidentally, an auxiliary variable(s) might
be useful in reducing the sampling variance associated with the
first stage of sampling. (2) When the second-stage sampling
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n.
fraction, N~' is constant, ni is proportional to Ni and the

1

constant. Selecting psu's with pps is often

workload varies from one psu to another.
is important for reasons of economy that

For
n. ,

1

many surveys, it
n·rather than N~ be
1

very helpful in
overcoming these disadvantages.

Exercise 4.14 Under the plan of applying a sampling frac-

4tion of 45 to each tree that is selected~ suppose that trees

numbered 1 and 3 are selected. Find the values of

two trees where ni is 4~ Ni rounded to the nearest

n. for these
1

integer. A lso~

find n= En .. Do the same assuming trees numbered 2 and 4 are
1

size of the
ni

case~ N--:-
1

constant. One should consider whether there is an appreciable

selected. This illustrates that the

is a random variable. Also~ in this

sample~ n = En.,
1

cannot be exactly

bias in the estimator (4.9). Use (4.6) instead of (4.9) unless

there is assurance that any bias in (4.9)~owing to unequal pro-

babilities of the ssu's being in the sample~ is negligible.

4.4 SELECTION OF PSU'S WITH PPS
Consider a sample of m psu's selected with replacement and

with selection probabilities PI' P2 ... , Pn (See section 1.1.2 in
Chapter I). Let n. be the size of a simple random sample of ssu's

1

that is ro be selected from the .th the event that it1 psu in IS

selected. If, by chance, the .th selected second time1 psu IS a
another sample of n. ssu's is selected. For a sample of n psu's

1

the estimator is:
m N.y.
Ell

1 Pi
(4.12)
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Remember to interpret "i" as an index of the psu's selected
by the m random draws. Notice that N.y. is an estimate of a

1 1
N.y.

psu total and that 1 1 is an estimate of the populationPi
total, Y, based on a sample of one psu and a simple random
sample of n. ssu's within it. Thus, there are m estimates of

1 .

1 m.N.y.
Y and (-) t ~ is an average of these estimates. The factor

m i Pi

~ makes y an estimator of Y. The variance of y, in Eq. 4.12, is:

"V(y) = 1[0 2 +m 1
1 M 1
---.,- 1: (".) (1- f21·)N~ i l"1

2 2 ]Ni 52 i
n.

1

(4.13)

where 2 1M Y. 2
01 = 1: P.(-! - Y)N2 i 1 Pi

and

N.
1

1:

52 = j2i

Exercise 4.15

(Y ., _ Y.) 2
1) 1

N. - 1
1

2
°1

Compare m in 4.13 with the variance of

Y4 in Table 1.1~ using the alternative expression for of in the

variance of Y4. Change the notation used in Chapter 1 to conform

to the notation used for psu's. This gives:

" 11m y. 2
V(Y4) = (-)( ) 1: P.(-.!. - Y)m MT i 1 Pi
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Why ~s this expression for V(Y4) different from the between

psu part of the variance in 4.13? In terms of the notation

for two-stage sampling Y4 is an estimate of Y rather than Y.
~

Change Y4 so it will be an estimator of Y and make the cor-
~

responding change in V(Y4). Your answer should agree exactly

°12
with in (4.13).m

Notice the correspondence between si in Eq. 4.7 and
~

the variance of Yl' plan 1, in Chapter I; also, notice the
2correspondence between 0- in Eq. 4.13 and the variance of

1.
~
Y4' plan 4, in Chapter I. The discussion in Chapter I of the
efficiency of plan 4 compared to plan 1 is relevant to the
first stage of sampling.
will be considerably less

2If Ni is a good measure of size, 01
2than Sl'

Compare the components of variance In Eq. 4.7 and Eq. 4.13
which pertain to the second stage of sampling. The only differ-
ence is a reflection of the difference in the probabilities of
selec~ion

1Pi = M and

at the first stage.
b· . 1 fsu stItutIng M or

When the probabilities are equal,
P. in 4.13 gives 4.7.
1

In Eq. 4.4, fij was expressed as the probability that
any given ssu has of being In a sample assuming the sample at
both stages was simple random sampling without replacement.
This equation now needs modification to be in accord with sampling
at the first stage with unequal probability and with replacement.
An appropriate probability equation is:

f ~. =
1J P.f2·

1 1

n.
1= P·N-

1 .
1

(4.14)
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where Pi is the selection probability, at any given random
d f h .th . h 1·raw, or t e 1 psu In t e popu atl0n,

f2i as defined before, is the sampling fraction within
h .th f h l' dt e 1 psu 0 t e popu atlon, an

f .. IS the probability which the jth ssu in the ith psu
IJ

of the population has of being in a sample obtained by
selecting one psu with pps and selecting a simple
random sample of n. ssu's within the selected psu.

1

It is in the context of the probability Eq. 4.14 that the
estimator, 4.12 and its variance, 4.13, are applicable, "assuming
m independent random selections of psu's.

The estimator, Eq. 4.12, and its variance, Eq. 4.13,
are for any given set of selection probabilities at the first
stage and any given set of sample sizes, n., at the second

1

stage. An important special case exists when f!., in Eq. 4.14IJ
is held constant and when the psu's are selected with probabilities

N.= N1
. By letting f' be theproportional to N., that is, when P.

1 1

constant value of f!., we obtain the
IJ

following results from Eq.
4.14:

n. = f'N = n
1

and n
f2i = N.

1

That is, the sample size within a psu is constant, and, since
f!. is also constant, the sample is self-weighted.
IJ
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The estimator and its variance become:

y =
2:2:y ..

1J
n (4.15)

A

1t 2 11M
f2i)S~~and V(y) = m °1 +--2: N. (1 - (4.16)- N . 1n 1

where 2 1 M N. (Y. _ y)2
°1 = - 2:N . 1 1

1

For computational purposes one might use:

1 M y.2
= _ 2: 1 (!)2N ~ - N

1 1

and 1 MN 2: Ni(l
i

Exercise 4.16 Show that Eqs. 4.12 and 4.13 reduce
N.

to 4.15 and 4.16 when P. = ~ and n. = n.
1 N 1

When the N. are not known, estimates of N· or a suitable
1 1

measure of size might be used in place of N .. In this case,
1

assuming f!. = f', the sampler would choose a value of f' such
1J

that f'N is the desired average size of sample from a psu. Since
the selection probabilities for psu's are known, the second-stage

f'sampling fraction f2i = ~ would be calculated for each selected
1

psu. Application of these second-stage sampling fractions gives
a self-weighted sample. The n. will be nearly equal if the

1

measure of size is close to being proportional to N .. The esti-
1

mator, Eq. 4.12, and its variance, Eq. 4.13, are applicable.
They could be modified

n.
pf =p.-!.i 2i iN. = f'.

1

by making use of the fact that

130



4.4.1 NUMERICAL EXAMPLE
Exercise 4.17 With reference to the apple tree example,

mn

we found for simple random sampling at both stages that the

sampling variance was 797.6 when m=2 and n.=n=2 (See Table 4.4).
1

For comparative purposes~ find the sampling variance for m=2
and n=2 when the trees are selected with probabilities propor-

tional to N .. The data needed are found in Table 4.3, columns
1

headed N. , Y. , and 2 Find the values of
2 1 2

S2i· <11 , NLNiS2i' and
1 1

1 2 A

NLS2i' then compute the variance of y for m=2 and n=2. Ans.

532.6.
Substituting results from exercise 4.16 In Eq. 4.16 gives:

V(y) = 439.7 + 1367 - n (57.99 (4.17)
m

439.74For m=2 the between psu variance, 2 = 219.9, compares with
458.6 (see Table 4.4) when two psu's are selected with equal
probability. As indicated by this result, selecting psu's with
pps is often very important in reducing the between psu compo-
nent of variance. For m-2 and n=2 the within psu component in
Eq. 4.17 is equal to 312.8 which compares with two other results
that were obtained when the trees are selected with equal proba-

n.
bi1ities: 339.0 when n. = 2, and 311.4 when N~ is constant and

1 1

n=2. The first result, 339.0, was recorded in Table 4.4 and
the second, 311.4, is readily obtained by Eq. 4.11.

131



variance formula 4.17 is 1748.8.
any given branch in the population

:-J.
Suppose that one tree is selected with probability N1

and that one branch IS selected from it with equal probability.
In this case, m=l, and n=l, and the variance of y according to

The probability of selecting
Ni 1

1s ( ) ( ) Th is is aN N" .1

special case of two-stage sampling that is the same as a single-
stage, simple random sample of one branch. We found earlier
that the variance among the 135 branches was 1762. The exact
variance for a simple random sample of one branch is:

(135 - 1) 17162 = 1748.8135
4.5 UNEQUAL PROBABILITY OF SELECTION AT BOTH STAGES

As a further exposition of the theory for two-stage
sampling, suppose a sample of trees is selected with replace-
ment and with selection probabilities proportional to trunk
size. Also, suppose that the method of sampling at the second
stage is the random-path method, RP-PPS, that was discussed
in Chapter III. You may recall that the random-path method
was presented in the context of sampling with replacement.

When the sampling at both stages is with unequal proba-
bility, the estimator of the population total Y is:

where

=

m
n = ~n.

. 1
1

~ ~i ~yiJ~.. p."
1 J IJ

n

(4.18)

132



Pi IS the selection probability for the ith psu
in the sample, and

p(j Ii) is the selection probability for the jth
ssu given that its psu has been selected.

y ..
Consider the quantity ~ in the estimator. When the value, p ..

IJ
for a unit in the sample (in this case, Yij) IS divided by
its selection probability (in this case, p ..) the quotient isIJ

"an estimate of the population total. Therefore, Yt in Eq. 4.18
is an average of n estimates of Y, one estimate from each branch
in the sample.

The subscript "t" was added to y because it is an esti-
mator of Y rather than Y. Notice that the estimator does not
contain N. In practice, one finds many populations to be

"sampled where N is unknown. An estimate, N, of N might be
made from a sample and, if needed, ~ could be used as an estimate

N
of Y. An estimator of N is obtained by substituting "1" for
y .. In 4.18.
IJ

Exercise 4.18 Suppose, for m=3, and n.=2, that appli-
1

cation of the above method to the apple tree population gives

the following samp le:

Population index Sample index
values of i and j values of i and J
Tree Path Tree Path Pi :-Hlli y ..

IJ-1- ~3 3 -1- 0.07035 .1599 59.5
1 4-1 3 2 0.07035 .07779 7.0
3 1-2-1-2 1 1 0.2312 .04864 139.3
3 2-3 1 2 0.2312 .05757 125.0
3 3-1-2 2 1 0.2312 .02081 31. 3
3 1-2-1-2 2 2 0.2312 .04864 139.3
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Tree No.3 and path 1-2-1-2 were selected twice. The selection

probabilities P. were proportional to X., the trunk sizes which
1 1

are presented in Table 4.'3. Verify the val1AeBof p .. For tree
1

tree No. 1 are from records not reproduced herein.

The values of p(jl i) and y .. for
IJ

Using Eq. 4.18

No. 3 in the popu la tion, the condi tiona l probabi li ties, P (j Ii) ,

are the probabilities in Column P4 of Table 3.2. Thus, the above

values of p(j Ii) and y .. for the branches in the sample from this
IJ

tree were taken from Table 3.2.

as the estimator, calculate the estimate of the total number of

apples. The answer is 7873, which is an estimate of 7199, the

total number of apples including "path" apples (See Table 4.3).

To find the varIance of Yt, refer to Eq. 4.13 and make
two modifications:

(1) f h f· N2 2. d f 2or t e Irst stage we want 01 Ins tea 0 01

because Yt IS an estimator of Y rather than Y, and
(2) for the second stage, the part of the formula repre-

senting the variance of an estimate of Yi for a simple
random sample of

2 2N.S2·
1 1

(1 - f2i) n.
1

n. needs to be changed. That is,
1

needs to be replaced by the cor-

responding variance for sampling within the ith psu
with pps. Also, ~ needs to be dropped. This gives:

= 1~L:m .
1

Yi 2 M 1
P.(-p -Y) +2:(-)
1 . p.

111
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where

The subscript r signifies random path.

For Tree No.3 the values of P(j Ii) and the values of

be computed.
The answer, 800,000 is recorded along with other values of S2.rl

Y ..
ntrr) are in columns P4 and Y4 of Table 3 .2 .

columns the 2 for number 3value of S . tree canrl

From these two

in the last column of Table 4.3.
Exercise 4.19 When n.=n, the second term in [] of Eq.

1

1 M
4.19 becomes - E

n i

x.
_ 1In the problem under consideration, Pi-lf

where X. is trunk size. From the data in Table 4.3, find the
1

S2,
value of E~ andP.

1

stituted in 4.19,

Yi 2
of EP. (-p - Y) •

1 .
1

you shoul,d have:

When your resul,ts are sub-

v (Yt) = ! r~,322 ,000 +
m l.

"111,462,000 I
I

n j

Exercise 4.20 From the sampl,e data given bn Exercise

4.16 estimate the total, number of terminal, branches on the six

trees. Ans. 122.0.

When the equation in Exercise 4.19 is divided by N2 we
obtain:
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To summarize, the following variance equations have been
obtained for three alternative two-stage plans for sampling
the small population of apple trees:

[
(1-f2) 1367J

917.1 + ------
n

(1)
~ 1

V(y) = m

is constantfor simple random sampling at both stages, where
and equal to f2 and 1-fl was assumed to be equal

n.
1

N-:-
1

to 1,

(2)

for sampling trees with probability proportional to Ni ~nd a
simple random sample of n branches from each selected tree,
and

(3) V(y) : ~ [i9Z+ 6~9j
for sampling trees with probability proportional to Xi (trunk
size) and application of the RP-PPS method to the sample trees.

The results are too limited to provide a basis for genera-
lization.
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Y.
1

!/Table 4.1 Representation of Population Data for Two Stage Sampling

ssu psu
psu mean Within psu variances

1 ... j N·1
1: Y )Z2 '(Yl' -.. J J 11 Yll· . .YIj ;YIN Yl Yl S21= 1Nl -1

E ~.) 2= Z . (y, . -
i Yil· ·Y.. ;Y'N y, Y. S2i" J IJ 1

IJ 1 . 1 1 N. - 1
1 1

1: ~ )2= Z .(YM'M YMl· 'YMj 'YMN YM YM J J M. SZM= NM - 1M

11
--A single bar "_" is used for an average of psu totals and a double

bar "=" indicates an average of secondary units. A. subscript 1 or
Z affixed to SZ indicates first or second stage variance. See defi-
nitions below.
Y . h 1 f h h .. Y f h' th . h .th.. IS t e va ue 0 t e c aracterlstlc or t e J ssu In t e 1IJ psu,

N.
1

E Y .. is the total of Y for the ith psu,
j IJ

M Ni
Y = l: l:

i j

M
Y .. = LY.
IJ i 1

is the total of Y for the population,

M is the number of psu's in the population,
N. is the population number of ssu's in the ith psu,
1

M
N = i Ni is the number of ssu's in the population,

y Y is the population mean per psu,M
= Y is theY N population mean per ssu,

Y. ,thy. 1 is the value of Y per in the
1 -fr." average ssu 1 psu,

1

N~ is the average number of ssu's per psu,

2 N. (Y.. - Y.) 2
S2i E1 1~.

1
1j 1

M
)')2L (Y. -

S2 (1 ) i 1

1 :::7 M-lN

. h' I . h .th dIS t e varIance among ssu 5 In t e 1 psu, an

is the variance among psu's on the basis of
one ssu.

137



Table 4.2 Components of Variation for a Hypothetical Population

psu 1 2 3 4 5 2Values of Y.. Y. Y. S2i1 11) --
I 67 45 51 20 35 218 43.6 308.8
2 32 27 82 39 18 198 39.6 620.3
3 14 25 21 30 28 118 23.6 40.3
4 55 48 72 63 88 326 65.2 242.7

y = = 43.0860 Y =

Values of (Y .. - Y)IJ
1 24 2 8 -23 -8
2 -11 -16 39 -4 -25
3 -29 -18 -22 -13 -15
4 12 5 29 20 45

Values of (Y. - Y)
1

1 0.6 0.6 0.6 0.6 0.6
2 -3.4 -3 .4 -3.4 -3.4 -3.4
3 -19.4 -19.4 -19.4 -19.4 -19.4
4 22.2 22.2 22.2 22.2 22.2

Values of (Y .. - Y. )IJ 1

1 23.4 1.4 7.4 -23.6 -8.6
2 -7.6 -12.6 42.4 -0.6 -21.6
3 -9.6 1.4 .-2.6 6.4 4.4
4 -10.2 -17 .2 6.8 -2.2 22.8

S2 = 487.053 is the variance among the 20 values of (Y .. - Y)IJ
S2 = 293.707 is the varIance among the 4 values of (Y. - Y)1 1

S2 = 303.025 is the average of the variances of (Y.. - Y. ) within2 . 1) 1
psu's. Within the first psu the variance IS:
23.42 1.42 7.42 (-23.6)2 '7

+ + + + (-8.6)~ 308.8.4 =
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Table 4.3 Summary Data for Six Apple Trees !/

No. of No. of Within Trunk Total No. Within
Terminal Apples on Tree Size in of Apples Tree
Branches Terminal Variance Sq. In. on Tree Variance

Branches DS-EP RP-PPS
Tree N. Y. 2 X. Y! S2.

1 1 S2i 1 1 rl
1 13 213 259 7.0 214 22,000
2 27 1,388 1,147 20.0 1,448 478,000
3 26 1,850 2,184 23.0 1,901 800,000
4 20 1,592 3,106 16.5 1,658 350,000
5 19 402 241 13.5 403 79,000
6 30 1,528 892 19.5 1,575 513,000--

Total 135 6,973 99.5 7,199

!/ 2 andThe values of N. , Y. , and S2i are from Table 2.6. The values of Y.
1 1 1

2 labeled 2 in Table 2.6. "Path apples" are not includedS2i are Yh and SYh
in y. 2 The values of Yl and S2. include the path apples and are

1 and S2i' 1 rl
taken from Table 3.3. The subscript "r" refers to random path.

DS-EP and RP-PPS refer to the method of sampling a tree as dis-
cussed in Chapter III.

Table 4.4 Variances for Alternative Sample Allocations
Components

Among psu'sl/ Within psu's
917.1 308.7

~m n V(y)
(1) 1 4 1225.8
(2) 2 2 797.6
(3) 4 1 583.5

1/
-Assumes fl is negligible.

458.6
229.3
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